pylogic.structures.ringlike package¶
Submodules¶
pylogic.structures.ringlike.commutative_ring module¶
- class pylogic.structures.ringlike.commutative_ring.CommutativeRIng[source]¶
- class pylogic.structures.ringlike.commutative_ring.CommutativeRIng(*args, **kwargs)
Bases:
RIng
[Z
]- classmethod property_times_is_commutative(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[Equals]] [source]¶
- times_is_commutative: ForallInSet[ForallInSet[Equals]]¶
pylogic.structures.ringlike.crooked_semiring module¶
- class pylogic.structures.ringlike.crooked_semiring.CrookedSemirIng[source]¶
- class pylogic.structures.ringlike.crooked_semiring.CrookedSemirIng(*args, **kwargs)
Bases:
CrookedSemirng
[Z
]- classmethod property_times_has_identity(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], one: Any) And[IsContainedIn, ForallInSet[And[Equals, Equals]]] [source]¶
- times_has_identity: And[IsContainedIn, ForallInSet[And[Equals, Equals]]]¶
pylogic.structures.ringlike.crooked_semirng module¶
- class pylogic.structures.ringlike.crooked_semirng.CrookedSemirng[source]¶
- class pylogic.structures.ringlike.crooked_semirng.CrookedSemirng(*args, **kwargs)
Bases:
Ringoid
,Generic
[Z
]- plus_has_identity: And[IsContainedIn, ForallInSet[And[Equals, Equals]]]¶
- plus_is_associative: ForallInSet[ForallInSet[ForallInSet[Equals]]]¶
- classmethod property_plus_has_identity(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) And[IsContainedIn, ForallInSet[And[Equals, Equals]]] [source]¶
- classmethod property_plus_is_associative(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]] [source]¶
- classmethod property_times_is_associative(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]] [source]¶
- classmethod property_zero_mul_eq_zero(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[And[Equals, Equals]] [source]¶
- times_is_associative: ForallInSet[ForallInSet[ForallInSet[Equals]]]¶
- zero_mul_eq_zero: ForallInSet[And[Equals, Equals]]¶
pylogic.structures.ringlike.division_ring module¶
- class pylogic.structures.ringlike.division_ring.DivisionRIng[source]¶
- class pylogic.structures.ringlike.division_ring.DivisionRIng(*args, **kwargs)
Bases:
RIng
[Z
]- have_mul_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]¶
- classmethod property_have_mul_inverses(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], one: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]] [source]¶
- classmethod property_times_latin_square(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]] [source]¶
- classmethod property_zero_product(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ForallInSet[Implies[Equals, Or[Equals, Equals]]]] [source]¶
- times_latin_square: ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]]¶
- zero_product: ForallInSet[ForallInSet[Implies[Equals, Or[Equals, Equals]]]]¶
pylogic.structures.ringlike.field module¶
- class pylogic.structures.ringlike.field.Field[source]¶
- class pylogic.structures.ringlike.field.Field(*args, **kwargs)
Bases:
DivisionRIng
[Z
]- classmethod property_times_is_commutative(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[Equals]] [source]¶
- times_is_commutative: ForallInSet[ForallInSet[Equals]]¶
pylogic.structures.ringlike.left_ringoid module¶
- class pylogic.structures.ringlike.left_ringoid.LeftRingoid[source]¶
- class pylogic.structures.ringlike.left_ringoid.LeftRingoid(*args, **kwargs)
Bases:
_RingoidCommon
A left-ringoid is a set closed under two binary operations + and *, where * left-distributes over +.
- is_closed_under_plus: ForallInSet[ForallInSet[IsContainedIn]]¶
- is_closed_under_times: ForallInSet[ForallInSet[IsContainedIn]]¶
- classmethod property_times_left_dist_over_plus(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]] [source]¶
- times_left_dist_over_plus: ForallInSet[ForallInSet[ForallInSet[Equals]]]¶
pylogic.structures.ringlike.nearring module¶
- class pylogic.structures.ringlike.nearring.NearrIng[source]¶
- class pylogic.structures.ringlike.nearring.NearrIng(*args, **kwargs)
Bases:
CrookedSemirIng
[Z
]- have_add_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]¶
- plus_latin_square¶
alias of
ForallInSet
[ForallInSet
[And
[ExistsUniqueInSet
[Equals
],ExistsUniqueInSet
[Equals
]]]]
- classmethod property_have_add_inverses(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]] [source]¶
- classmethod property_plus_latin_square(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]] [source]¶
pylogic.structures.ringlike.ordered_field module¶
pylogic.structures.ringlike.right_ringoid module¶
- class pylogic.structures.ringlike.right_ringoid.RightRingoid[source]¶
- class pylogic.structures.ringlike.right_ringoid.RightRingoid(*args, **kwargs)
Bases:
_RingoidCommon
A left-ringoid is a set closed under two binary operations + and *, where * left-distributes over +.
- is_closed_under_plus: ForallInSet[ForallInSet[IsContainedIn]]¶
- is_closed_under_times: ForallInSet[ForallInSet[IsContainedIn]]¶
- classmethod property_times_right_dist_over_plus(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]] [source]¶
- times_right_dist_over_plus: ForallInSet[ForallInSet[ForallInSet[Equals]]]¶
pylogic.structures.ringlike.ring module¶
- class pylogic.structures.ringlike.ring.RIng[source]¶
- class pylogic.structures.ringlike.ring.RIng(*args, **kwargs)
Bases:
SemirIng
[Z
]- have_add_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]¶
- plus_latin_square¶
alias of
ForallInSet
[ForallInSet
[And
[ExistsUniqueInSet
[Equals
],ExistsUniqueInSet
[Equals
]]]]
- classmethod property_have_add_inverses(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]] [source]¶
- classmethod property_plus_latin_square(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]] [source]¶
pylogic.structures.ringlike.ringoid module¶
- class pylogic.structures.ringlike.ringoid.Ringoid[source]¶
- class pylogic.structures.ringlike.ringoid.Ringoid(*args, **kwargs)
Bases:
LeftRingoid
,RightRingoid
A ringoid is a set closed under two binary operations + and *, where * distributes over +.
- is_closed_under_plus: ForallInSet[ForallInSet[IsContainedIn]]¶
- is_closed_under_times: ForallInSet[ForallInSet[IsContainedIn]]¶
- classmethod property_times_dist_over_plus(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], times_operation: SpecialInfix[Any, Any, Expr, Expr]) And[ForallInSet[ForallInSet[ForallInSet[Equals]]], ForallInSet[ForallInSet[ForallInSet[Equals]]]] [source]¶
- times_dist_over_plus: And[ForallInSet[ForallInSet[ForallInSet[Equals]]], ForallInSet[ForallInSet[ForallInSet[Equals]]]]¶
pylogic.structures.ringlike.rng module¶
- class pylogic.structures.ringlike.rng.Rng[source]¶
- class pylogic.structures.ringlike.rng.Rng(*args, **kwargs)
Bases:
Semirng
[Z
]- have_add_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]¶
- plus_latin_square¶
alias of
ForallInSet
[ForallInSet
[And
[ExistsUniqueInSet
[Equals
],ExistsUniqueInSet
[Equals
]]]]
- classmethod property_have_add_inverses(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]] [source]¶
- classmethod property_plus_latin_square(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]] [source]¶
pylogic.structures.ringlike.semiring module¶
- class pylogic.structures.ringlike.semiring.SemirIng[source]¶
- class pylogic.structures.ringlike.semiring.SemirIng(*args, **kwargs)
Bases:
Semirng
[Z
]- classmethod property_times_has_identity(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], one: Any) And[IsContainedIn, ForallInSet[And[Equals, Equals]]] [source]¶
- times_has_identity: And[IsContainedIn, ForallInSet[And[Equals, Equals]]]¶
pylogic.structures.ringlike.semirng module¶
- class pylogic.structures.ringlike.semirng.Semirng[source]¶
- class pylogic.structures.ringlike.semirng.Semirng(*args, **kwargs)
Bases:
CrookedSemirng
[Z
]- plus_is_commutative: ForallInSet[ForallInSet[Equals]]¶
- classmethod property_plus_is_commutative(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[Equals]] [source]¶