pylogic.structures.ringlike package

Submodules

pylogic.structures.ringlike.commutative_ring module

class pylogic.structures.ringlike.commutative_ring.CommutativeRIng[source]
class pylogic.structures.ringlike.commutative_ring.CommutativeRIng(*args, **kwargs)

Bases: RIng[Z]

classmethod property_times_is_commutative(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[Equals]][source]
times_is_commutative: ForallInSet[ForallInSet[Equals]]

pylogic.structures.ringlike.crooked_semiring module

class pylogic.structures.ringlike.crooked_semiring.CrookedSemirIng[source]
class pylogic.structures.ringlike.crooked_semiring.CrookedSemirIng(*args, **kwargs)

Bases: CrookedSemirng[Z]

one: Constant[Z] | Any
classmethod property_times_has_identity(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], one: Any) And[IsContainedIn, ForallInSet[And[Equals, Equals]]][source]
times_has_identity: And[IsContainedIn, ForallInSet[And[Equals, Equals]]]

pylogic.structures.ringlike.crooked_semirng module

class pylogic.structures.ringlike.crooked_semirng.CrookedSemirng[source]
class pylogic.structures.ringlike.crooked_semirng.CrookedSemirng(*args, **kwargs)

Bases: Ringoid, Generic[Z]

plus_has_identity: And[IsContainedIn, ForallInSet[And[Equals, Equals]]]
plus_is_associative: ForallInSet[ForallInSet[ForallInSet[Equals]]]
classmethod property_plus_has_identity(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) And[IsContainedIn, ForallInSet[And[Equals, Equals]]][source]
classmethod property_plus_is_associative(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]][source]
classmethod property_times_is_associative(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]][source]
classmethod property_zero_mul_eq_zero(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[And[Equals, Equals]][source]
times_is_associative: ForallInSet[ForallInSet[ForallInSet[Equals]]]
zero: Constant[Z] | Any
zero_mul_eq_zero: ForallInSet[And[Equals, Equals]]

pylogic.structures.ringlike.division_ring module

class pylogic.structures.ringlike.division_ring.DivisionRIng[source]
class pylogic.structures.ringlike.division_ring.DivisionRIng(*args, **kwargs)

Bases: RIng[Z]

have_mul_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]
classmethod property_have_mul_inverses(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], one: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]][source]
classmethod property_times_latin_square(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]][source]
classmethod property_zero_product(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ForallInSet[Implies[Equals, Or[Equals, Equals]]]][source]
times_latin_square: ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]]
zero_product: ForallInSet[ForallInSet[Implies[Equals, Or[Equals, Equals]]]]

pylogic.structures.ringlike.field module

class pylogic.structures.ringlike.field.Field[source]
class pylogic.structures.ringlike.field.Field(*args, **kwargs)

Bases: DivisionRIng[Z]

classmethod property_times_is_commutative(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[Equals]][source]
times_is_commutative: ForallInSet[ForallInSet[Equals]]

pylogic.structures.ringlike.left_ringoid module

class pylogic.structures.ringlike.left_ringoid.LeftRingoid[source]
class pylogic.structures.ringlike.left_ringoid.LeftRingoid(*args, **kwargs)

Bases: _RingoidCommon

A left-ringoid is a set closed under two binary operations + and *, where * left-distributes over +.

is_closed_under_plus: ForallInSet[ForallInSet[IsContainedIn]]
is_closed_under_times: ForallInSet[ForallInSet[IsContainedIn]]
classmethod property_times_left_dist_over_plus(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]][source]
times_left_dist_over_plus: ForallInSet[ForallInSet[ForallInSet[Equals]]]

pylogic.structures.ringlike.nearring module

class pylogic.structures.ringlike.nearring.NearrIng[source]
class pylogic.structures.ringlike.nearring.NearrIng(*args, **kwargs)

Bases: CrookedSemirIng[Z]

have_add_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]
plus_latin_square

alias of ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]]

classmethod property_have_add_inverses(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]][source]
classmethod property_plus_latin_square(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]][source]

pylogic.structures.ringlike.ordered_field module

pylogic.structures.ringlike.right_ringoid module

class pylogic.structures.ringlike.right_ringoid.RightRingoid[source]
class pylogic.structures.ringlike.right_ringoid.RightRingoid(*args, **kwargs)

Bases: _RingoidCommon

A left-ringoid is a set closed under two binary operations + and *, where * left-distributes over +.

is_closed_under_plus: ForallInSet[ForallInSet[IsContainedIn]]
is_closed_under_times: ForallInSet[ForallInSet[IsContainedIn]]
classmethod property_times_right_dist_over_plus(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], times_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[ForallInSet[Equals]]][source]
times_right_dist_over_plus: ForallInSet[ForallInSet[ForallInSet[Equals]]]

pylogic.structures.ringlike.ring module

class pylogic.structures.ringlike.ring.RIng[source]
class pylogic.structures.ringlike.ring.RIng(*args, **kwargs)

Bases: SemirIng[Z]

have_add_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]
plus_latin_square

alias of ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]]

classmethod property_have_add_inverses(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]][source]
classmethod property_plus_latin_square(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]][source]

pylogic.structures.ringlike.ringoid module

pylogic.structures.ringlike.ringoid.RIngoid

alias of Ringoid

class pylogic.structures.ringlike.ringoid.Ringoid[source]
class pylogic.structures.ringlike.ringoid.Ringoid(*args, **kwargs)

Bases: LeftRingoid, RightRingoid

A ringoid is a set closed under two binary operations + and *, where * distributes over +.

is_closed_under_plus: ForallInSet[ForallInSet[IsContainedIn]]
is_closed_under_times: ForallInSet[ForallInSet[IsContainedIn]]
classmethod property_times_dist_over_plus(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], times_operation: SpecialInfix[Any, Any, Expr, Expr]) And[ForallInSet[ForallInSet[ForallInSet[Equals]]], ForallInSet[ForallInSet[ForallInSet[Equals]]]][source]
times_dist_over_plus: And[ForallInSet[ForallInSet[ForallInSet[Equals]]], ForallInSet[ForallInSet[ForallInSet[Equals]]]]

pylogic.structures.ringlike.rng module

class pylogic.structures.ringlike.rng.Rng[source]
class pylogic.structures.ringlike.rng.Rng(*args, **kwargs)

Bases: Semirng[Z]

have_add_inverses: ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]]
plus_latin_square

alias of ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]]

classmethod property_have_add_inverses(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr], zero: Any) ForallInSet[ExistsUniqueInSet[And[Equals, Equals]]][source]
classmethod property_plus_latin_square(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[And[ExistsUniqueInSet[Equals], ExistsUniqueInSet[Equals]]]][source]

pylogic.structures.ringlike.semiring module

class pylogic.structures.ringlike.semiring.SemirIng[source]
class pylogic.structures.ringlike.semiring.SemirIng(*args, **kwargs)

Bases: Semirng[Z]

one: Constant[Z] | Any
classmethod property_times_has_identity(set_: Set, times_operation: SpecialInfix[Any, Any, Expr, Expr], one: Any) And[IsContainedIn, ForallInSet[And[Equals, Equals]]][source]
times_has_identity: And[IsContainedIn, ForallInSet[And[Equals, Equals]]]

pylogic.structures.ringlike.semirng module

class pylogic.structures.ringlike.semirng.Semirng[source]
class pylogic.structures.ringlike.semirng.Semirng(*args, **kwargs)

Bases: CrookedSemirng[Z]

plus_is_commutative: ForallInSet[ForallInSet[Equals]]
classmethod property_plus_is_commutative(set_: Set, plus_operation: SpecialInfix[Any, Any, Expr, Expr]) ForallInSet[ForallInSet[Equals]][source]

Module contents